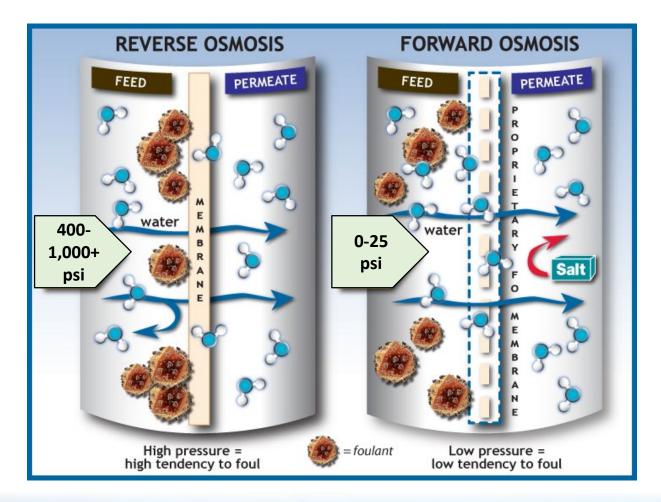
Panel Discussion: Advances in Membrane Cleaning, Sanitation & Wastewater Management

3:30 - 4:25 PM, June 12, 2024

embigine for the second second

BROUGHT TO YOU BY

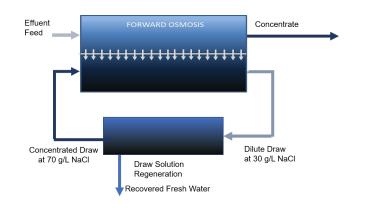
AMERICAN Dairy Products INSTITUTE

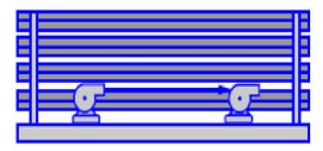

Panel Discussion: Forward Osmosis for Wastewater Management

Devesh Mittal Vice President of Environmental Services, Aquatech

Osmosis Explained: FO/RO Comparison

• Osmosis is the flow of water across a semi-permeable membrane from a solution of lower osmotic pressure to a solution of higher osmotic pressure. In general, the higher the dissolved solids concentration, the higher the osmotic pressure.


• The rate of osmosis is controlled by diffusion of the solutes on *both sides* of the membrane and *within* the membrane.


• FO membranes reject organics, minerals and other solids — similar to reverse osmosis (RO) — but resist typical fouling problems

Core Technologies

• We are pioneer and system developer in two important membrane technology areas

OsmoARO[™] System

Forward Osmosis (FO)

Osmotic separation of water from a lower TDS stream to a higher TDS draw solution

Salt rejection similar to RO but with osmotic driving force instead of pressure driving force

Treats highly fouled waters from 5000 mg/L TDS to ~40,000 mg/L TDS with final brine up to 130 g/L TDS

Osmotically Assisted RO (OARO) via low salt rejection SWRO

Stepwise concentration of pretreated wastewater stream by membrane separation

Maintains delta-π similar to SWRO throughout the process

Max pressure of 80 bar is required

Final brine concentration of 250 g/L TDS can be achieved

Applications Where FO is Advantageous

- A concentrated stream (*e.g.*, saturated brine) needs to be diluted and a highly fouling wastewater is available.
- A stream is so fouling that reverse osmosis (RO) requires either too much cleaning or pretreatment (*e.g.*, process wastewater).
- A draw solution is free (e.g., high salt brine in pickling)
- The draw solution can be consumed. Specifically, a concentrated syrup or powder can be used to extract water
- A product needs to be concentrated that is too fragile for evaporation, e.g., concentrating grape juice to make a dessert wine, tomato paste without evaporation, pharmaceuticals
- FO concentrated wastewater has value (Certified Organic fertilizer produced as a byproduct from a biogas facility)

Membrane for High Fouling Feeds

- Minimal pretreatment for most wastewaters
 - 100 micron filtration
 - pH adjustment
- Higher Recoveries of high fouling feeds
 - Up to 95% recovery compared to 60 70% for other membrane processes

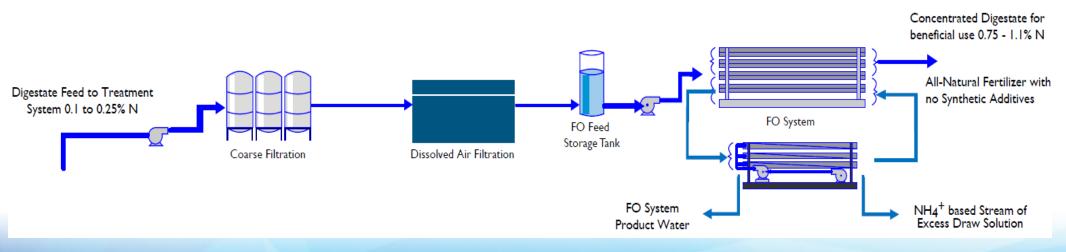
Ideal for ZLD – especially where the crystallizer is the mostly costly step

Simple flux recovery from feed upsets (i.e. organic fouling or scaling)

- 1 bar (15 psi) hydrostatic pressure minimizes fouling and membrane damage
- Simple osmotic backwashing and water flushing for performance recovery

Fertilizer Value of Digester Effluent

Biogas is a growing energy source; the wastewater generated must be handled.


- Depending on the feed source, a 1 MW Anaerobic Digester can produce up to 10,000,000 gallons a year of effluent
- The effluent (digestate) contains between 0.1% to 0.4% nitrogen in ammoniacal form about 0.25% average
- The benefit: farming practices are on the rise requiring locally sourced fertilizer, including organic certified fertilizer
 - The key component of organic fertilizer is nitrogen. Depending on the source, liquid organic fertilizer (applied in drip irrigation) is valued between \$4 to \$8 per lb of N
- Our technology reclaims water from the digestate creating a nutrient concentrate that has been approved for use on farms, including organic certified land

FO Concentrator Approach

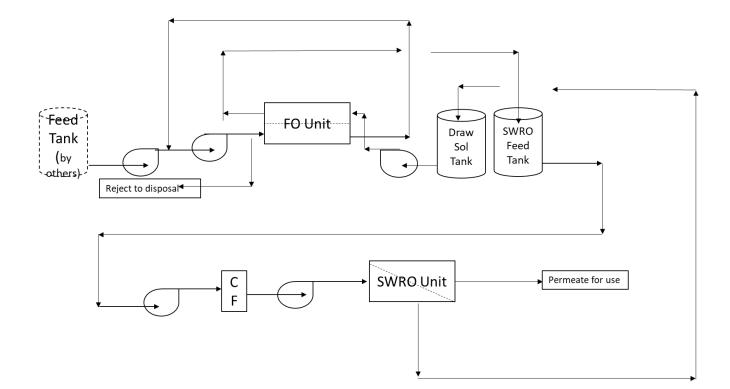
Primary objective: reduce volume and keep in its natural form

- Coarse filtration and DAF removes TSS and sticky lignin's prior to FO concentration.
 - No flocculant (polymer) is added.
- Forward Osmosis Concentration System up to 4X
- Draw Solution Regeneration System RO quality permeate suitable for plant reuse

Concentrate vs. Raw Feed

Visual comparison of the raw digestate to the FO concentrate. The FO pilot has achieved 75% water recovery producing a concentrate 4x more concentrated than the feed.

Pilot System For 2,500 gpd



Forward Osmosis Membrane Concentrator SWRO Draw Solution Regeneration and Permeate Production

Package System For 10,000 gpd Process Water

- ConcentratOAR™
- Treatment Flow
 10,000 gpd
- Operation 8 Hours
 (16.67 gpm)
- Recovery 90% clean
 water for reuse
- Brine 10% haul or treat

Final Comments

 Robust and reliable at variations of quantity and quality of high fouling feeds with minimum pre-treatment

Dairy

- Stable flux while achieving high recoveries
- Compact modular design, flexible construction, and small footprint
- Treated permeate can be discharged back to the environment or can be utilized for irrigation or process water
- Concentrated digestate can have commercial value as fertilizer
- Depending on source, fertilizer may be classified as organic
 Organic fortilizer has a significantly higher value
 - Organic fertilizer has a significantly higher value

CONTACT CORPORATE: Devesh Mittal

